Scoring and heuristics

• Knowledge is represented as profiles of findings that occur in diseases
• There are measures of importance and frequency for each finding in each disease
• Found to be most “scalable” approach for comprehensive decision support systems
• Examples – INTERNIST-1/QMR, Dxplain, Iliad
History of systems using scoring and heuristics approach

• INTERNIST-1
 – Original approach, aimed to develop an expert diagnostician in internal medicine (Miller, 1982)
 – System originally designed to mimic the expertise of an expert diagnostician at the University of Pittsburgh, Dr. Jack Meyers
 – Evolved into Quick Medical Reference (QMR) where goal changed to using knowledge base explicitly (Miller, 1986)

• DxPlain used principles of INTERNIST-1/QMR but developed more disease coverage (Barnett, 1987)
 – Only system still available: http://www.lcs.mgh.harvard.edu/dxplain.asp

• Iliad attempted to add Bayesian statistics to the approach (Warner, 1989)

INTERNIST-1/QMR knowledge representation

• Disease profiles – findings known to reliably occur in the disease
• Findings – from history, exam, and laboratory
• Import – each finding has a measure of how important it is to explain (e.g., fever, chest pain)
• Properties – e.g., taboos, such as a male cannot get pregnant and a female cannot get prostate cancer
Findings in diseases

• For each finding that occurs in each disease, there are two measures
 – Evoking strength – the likelihood of a disease given a finding
 • Scored from 0 (finding non-specific) to 5 (pathognomic)
 – Frequency – the likelihood of a finding given a disease
 • Scored from 1 (occurs rarely) to 5 (occurs in all cases)

Disease profile for acute myocardial infarction
INTERNIST-1/QMR scoring algorithm

- Initial positive and negative findings are entered by user
- A disease hypothesis is created for any disease that has one or more of the positive findings entered
- Each disease hypothesis gets a score
 - Positive component based on evoking strengths of all findings
 - Negative component of score based on frequency from findings expected to occur but which are designated as absent
- A diagnosis is made if the top-ranking diagnosis is >80 points (one pathognomonic finding) above the next-highest one
 - When diagnosis made, all findings for a disease are removed from the list, and subsequent diagnoses are made
- Performed as well as experts in NEJM clinical cases (Miller, 1982)

Limitations of INTERNIST-1 and evolution to QMR

- Limitations
 - Long learning curve
 - Data entry time-consuming
 - Diagnostic dilemmas not a major proportion of clinician information needs
 - Knowledge base incomplete
- Evolution to QMR (Miller, 1986)
 - Less value in "case" mode
 - More value in knowledge exploration mode, e.g.,
 - Rule diseases in and out
 - Obtain differential diagnoses
 - Link to more detailed information
 - Became commercial product but did not succeed in marketplace
Toward the modern era

• By the late 1980s and early 1990s, it was apparent that
 – Diagnostic process was too complex for computer programs
 – Systems took long time to use and did not provide information
 that clinicians truly needed
 – “Greek Oracle” model was inappropriate to medical usefulness
 (Miller, 1990)

• More recently
 – Diagnostic decision support systems less effective than
 therapeutic systems (Garg, 2005)
 – General failure of AI and ESs to live up to the hype of the 1980s
 has been acknowledged (Mullins, 2005)
 – But diagnostic error still does continue, and harms patients
 (Garber, 2007)

Where are we headed now?

• Decision support evolved in the 1990s with
 recognition of their value within EHR
 – Rules and algorithms most useful in this context
 – Evolution from broad-based diagnostic decision
 support to narrower therapeutic decision support
 (covered in following segments)

• AMIA “roadmap” for future provides three “key
 pillars” (Osheroff, 2006; Osheroff, 2007)
 – Best knowledge available when needed
 – High adoption and effective use
 – Continuous improvement of knowledge and methods
But the quest for diagnostic decision support continues

- Isabel (www.isabelhealthcare.com) – “Second generation” approach uses
 - Natural language processing to map entered text into findings
 - List of differential diagnosis with 30 most likely diagnoses grouped by body system, not probability
- Performance studies
 - Initial development and validation for pediatrics (Ramnarayan, 2006) – reminded of one clinically important case 1 of 8 times
 - Subsequently extended and evaluated in emergency department (Ramnarayan, 2007) – displayed correct diagnosis 95% of time and 90% of time showed “must-not-miss” diagnoses
 - Now expanded to adult internal medicine (Graber, 2008) – pasting in text from NEJM case reports had correct diagnosis suggested in 48 of 50 cases for key text and 37 of 50 cases for all text

Other continuing approaches – “Googling” for a diagnosis?

- Large quantity of text in Google may hold latent knowledge?
 - Found in a case study to make diagnosis of a rare condition (Greenwald, 2005)
 - When text of NEJM cases entered, 15 of 26 had correct diagnosis in top three suggested (Tang, 2006)