Intravenous Anesthetics

Medical Student Lecture Series
Shaun Yockelson MD
Pharmacokinetics: What the BODY does to the drug

- Adsorption
- Distribution
- Metabolism (Biotransformation)
- Excretion

 ◦ Elimination: Combined actions of metabolism and excretion
 ◦ Clearance: The rate of elimination
• Adsorption
 ◦ Rate at which drug enters bloodstream from site of administration (IV, PO, IM, SQ, etc.)
 ◦ Influenced by:
 • Site of administration
 • Blood flow
 • Molecular characteristics:
 ◦ Lipid solubility
 ◦ Degree of ionization
 ◦ Concentration of drug
Pharmacokinetics

- **Distribution – To the site of action**
 - Organ perfusion: Highly perfused/“vessel rich” group takes up more drug than “vessel poor”
 - Brain, heart, liver, kidneys, lungs vessel rich
 - 10% of entire body mass, but receives 75% of CO
 - Fat is largest vessel poor compartment
 - Protein binding
 - Inhibits cellular uptake of drug, non-active
 - Albumin – Acidic drugs; AAG – Basic drugs
 - Lipid solubility
 - Lipophilic drugs cross cell membrane more easily

- **Volume of distribution – Theoretical concept**
 - $V_d = \frac{[\text{drug dose}]}{[\text{plasma concentration}]}$
 - Small volume for drug properties that promote staying in blood stream (i.e., protein binding, ionization, hydrophilicity)
Pharmacokinetics

- **Metabolism (Biotransformation)**
 - Hepatic metabolism primary mode for anesthetic drugs
 - Glucoronidation and conjugation
 - Hepatic blood flow and extraction ratio determine rate
 - Spontaneous metabolism useful in setting of organ dysfunction
 - Plasma esterases and Hoffman elimination (hydrolysis)
- **Excretion**
 - Primarily via urine, though important exceptions
 - Lungs excrete anesthetic gasses!
 - Some medications may be excreted without metabolism (ie anesthetic vapors, gabapentin)
- **Elimination – Combined effects of metabolism and excretion**
 - Half-time: Time to decrease plasma concentration by 50%
• Context sensitive half-time
 ◦ Takes into account the duration of infusion, elimination, AND the volume of distribution
 • Particularly true of lipophilic substances, represents ‘depot’ accumulation of drug in body stores
 ◦ Propofol and fentanyl are two examples of drugs with a large context-sensitive contribution to half-time
- Context sensitive half-time
Pharmacodynamics: What the DRUG does to the body

- Efficacy – Maximum effect of the drug (ie max analgesia, max sedation)
 - Intrinsic to the drug
- Potency – Dose required to achieve efficacy
 - Intrinsic to the drug
- ED50 – Dose of drug required to produce expected effect in 50% of patients
 - Anesthesia example: MAC for inhalational agents
- Visual representation of efficacy and potency
Mechanism at site of action

- **Agonist**: Activates a specific cell receptor, changing cellular function
 - May be either direct effects on ionic flux or (ie ion channels) through activation of secondary messengers (ie G-protein linked)
- **Antagonist**: Binds to a receptor without activating or changing cellular function
 - Irreversible vs. competitive binding
- **Mixed**: Displays both agonist and antagonist properties on the same receptor
 - Modern example: Buprenorphine
 - Why could this be a problem for surgical patients?
• What is general anesthesia?
 ◦ Amnesia (and hypnosis)
 ◦ Analgesia
 ◦ Immobility

As anesthesiologists, it is our job to determine the most safe, effective, and practical means to achieve the above goals.
Several classes of IV anesthetics

- GABA system
 - Barbiturates
 - Benzodiazepines
 - Propofol
 - Etomidate
- Ketamine
- Dexmedetomidine
- (Opioids)
GABA System

- Principal inhibitory neurotransmitter
- Activation of GABA receptor produces hyperpolarization of cellular membrane
 - In turn, this has an inhibitory effect on any further depolarization
- Two classes of GABA receptors
 - \(\text{GABA}_A \) is a ligand-gated ion channel
 - \(\text{Cl}^- \) ion influx or \(\text{K}^+ \) ion efflux
 - \(\text{GABA}_B \) is a G protein-coupled receptor
Barbiturates

- Clinically relevant medications:
 - Thiopental
 - Phenobarbital
 - Methohexital

- Mechanism of action
 - GABA\(_A\) receptor agonist
 - Depresses reticular activating system (RAS)

- Uses
 - General anesthesia induction agent
 - Potent antiepileptic, capable of causing burst suppression on EEG
 - Generally not utilized in US for anesthesia anymore, with exception of methohexital (ECT procedures)
• Rapid onset and termination
• Primarily hepatic metabolism
• Effect on physiology:
 ◦ CNS: ↓CMRO₂, ↓ICP, ↓CBP, neuroprotective
 • Drop in ICP is more than the drop in MAP, so CPP is preserved
 ◦ Respiratory: apnea, ↓response to hypoxia and hypercarbia, relatively preserved airway reflexes
 ◦ CV: ↓SVR, ↓CO, ↓BP, ↑HR
 ◦ Side effects: onion taste, excitatory symptoms, can precipitate acute intermittent porphyria
Benzodiazepines

- Clinically relevant medications:
 - Midazolam
 - Alprazolam
 - Diazepam

- Mechanism of Action
 - GABA\textsubscript{A} receptor agonist

- Uses
 - General anesthesia induction
 - Sedation
 - Anxiolysis
 - Antiepileptic

- Metabolism
 - Hepatic – Diazepam has active phase I metabolites, leading to long duration of action
 - Midazolam has a very high extraction ratio = short duration

- Excretion
 - Primarily via urine
• Amnesia most useful property
• Effect on physiology:
 ◦ CNS: ↓CMRO₂, ↓ICP, ↓CBP, ↑seizure threshold, neuroprotection
 ◦ Respiratory: apnea in large doses, ↓Response to CO₂, ↓Airway reflexes
 ◦ CV: minimal ↓CO and ↓SVR
• Antagonist for overdose
 ◦ Flumazenil
 • Competitive antagonist at GABAₐ receptor
- **Propofol**

 - **Mechanism of Action**
 - GABA$_A$ (and GABA$_B$?) receptor agonist
 - Recent research suggests Na$^+$ channel blocking and endocannabinoid effects as well (Hot, Horny, and Hungry)

 - **Uses**
 - Induction agent for GA
 - Sedation
 - Antiemetic
 - Antipruritic

 - **Characteristics**
 - Ultra rapid onset
 - Short duration
 - Hepatic and pulmonary metabolism
 - However, duration of action terminated by re-distribution
 - Lipid emulsion can promote bacterial growth
 - Lecithin, derived from egg yolk, is used as an emulsifier
 - Caution in patients with severe egg allergies
Effects on physiology
- CNS: ↓ICP, ↓CMRO2, neuroprotection
- Respiratory: Apnea, Depression of airway reflexes, ↓hypoxic ventilatory drive and response to hypercapnea
- CV: HYPOTENSION due to ↓SVR, ↓cardiac contractility, ↓preload
 - Impaired arterial baroreflex to hypotension
- Potent antiemetic at subanesthetic doses

Side effects
- Pain on injection – Often given with lidocaine
- Myoclonus – More common with etomidate
- Propofol Infusion Syndrome
 - Seen in cases of long-term infusion for sedation, usually in the ICU
 - Usually in combination with catecholamines and/or steroids
• Mechanism of Action
 ◦ GABA$_A$ receptor agonist
• Use
 ◦ Induction agent for GA
 ◦ Procedural sedation
• Characteristics
 ◦ Ultra rapid onset
 ◦ Duration of action terminated due to redistribution
 ◦ Single bolus dose capable of causing adrenal suppression for up to 72 hrs
 • Dose-dependent via 11-beta-hydroxylase inhibition
 ◦ Does not have significant effects on SVR
• Pharmacokinetics
 ◦ Highly protein bound = Small Vd
 ◦ Hepatic metabolism as well as plasma esterases
 ◦ Excretion via urine and biliary system

• Side Effects
 ◦ Pain on injection (Etomidate > Propofol)
 ◦ Myoclonus (Etomidate > Propofol)
 ◦ Nausea and vomiting
 ◦ Propylene glycol toxicity
 • Uncommon as etomidate rarely used as infusion
Dexmedetomidine

- **MOA:** α_2 adrenoreceptor agonist
 - α_2B and α_2C - located in brain and spinal cord
 - Responsible for sedative and analgesic properties, decreased sympathetic outflow
 - α_2A - located in periphery
 - Responsible for hypotension

- **Uses**
 - Procedural sedation
 - Adjunct to general anesthesia
 - ICU sedation/Bridge to extubation
 - Management of withdrawal syndromes

- **Unique in that sedation produced much more closely resembles physiologic sleep as opposed to hypnotic state**
 - Via decreased activity of locus ceruleus and increased GABA pathways
• **Characteristics**
 ◦ Highly specific for α_2 receptor (α_2/α_1 1600:1)
 ◦ Rapid distribution
 ◦ Medium length duration of action
 ◦ Context sensitive half-time must be observed
 ◦ Hepatic metabolism, renal excretion, highly protein bound

• **Effects on physiology**
 ◦ Analgesia and light to moderate sedation
 ◦ Decreased minute ventilation with preserved response to CO2
 ◦ Bradycardia and hypotension common, especially with loading dose
Ketamine

- **Mechanism of Action**
 - NMDA receptor antagonist (glutamate transmission inhibition)
 - Analog to phencyclidine (PCP), created by the US gov’t

- **Uses**
 - Induction for general anesthesia
 - Procedural Sedation
 - Adjunct to general anesthesia
 - Adjunctive analgesia

- **Characteristics**
 - Dissociative Anesthetic
 - In contrast to other IV anesthetics, primarily causes disruption of communication between thalamus and limbic cortex as opposed to suppression of RAS
 - Rapid onset
 - Short duration of action terminated by redistribution
 - Hepatic metabolism and renal excretion
• **Effects on Physiology**
 ◦ CNS: ↑CMRO₂ from excitatory CNS activity, ↑CBF from ↑CMRO₂ and cerebral vasodilation, ↑IOP, Dilated pupils and nystagmus
 ◦ Respiratory: maintain CO₂ response, relaxation of bronchial smooth muscles, salivation
 ◦ CV: Norepinephrine release leading to ↑SVR, ↑HR, ↑CO, DIRECT myocardial depressant
 † Beware in acutely ill/catecholamine-depleted patients

• **Side effects**
 ◦ Dysphoria and emergence delirium
 † Might want to avoid in comorbid psychiatric disease
 † BZDs can be a useful tool to prevent or treat
 ◦ Salivation
 † Pretreatment with glycopyrrolate
 ◦ Caution in those with elevated ICP/IOP (ie glaucoma, open globe/rupture, intracranial mass)
 ◦ Caution in those with CAD or major vascular disease
• Most IV anesthetics influence the GABA system
• Choice of anesthetic agent determined by goals of anesthetic and patient comorbidities
• Dosing determined by age, physiological function, comorbid disease, and use of adjuncts
• Barbiturates are capable of precipitating AIP though are rarely used anymore
- Flumazenil is a specific antidote for BZD overdose
- Propofol is the workhorse of modern anesthesia, but is not appropriate in every circumstance
- Etomidate is capable of causing adrenal suppression with just one dose
- Dexmedetomidine most closely mimics the state of natural sleep
- Ketamine produces a dissociative state that is unique amongst IV anesthetics

Take Home Points